If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+16x-10=0
a = 5; b = 16; c = -10;
Δ = b2-4ac
Δ = 162-4·5·(-10)
Δ = 456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{456}=\sqrt{4*114}=\sqrt{4}*\sqrt{114}=2\sqrt{114}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{114}}{2*5}=\frac{-16-2\sqrt{114}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{114}}{2*5}=\frac{-16+2\sqrt{114}}{10} $
| 2-3*(1-x)=(2x+1)*4 | | 45r2-150r+125=0 | | 6m+4=4m+8 | | 1.5-11=x-1 | | 0.1/x+8=0.6/x-9 | | 5x−10=0 | | 6x−18=30 | | 2c−–2=16 | | x−8=48 | | 4. 2x–4+3x=41 | | 7x-3x²=4x | | 6x–3=4x+5 | | y*5=2 | | 5x-18=6x+21 | | 16(2x+10)=64 | | 5n+(-13)=17 | | -15=-5d+40 | | 4.2x–4+3x=41 | | -4x+14=-3x+8 | | 6*c=-24 | | 5x+20=-x+2 | | -4x+7=-x-17 | | a/2+16=60 | | 8q(1-2)+10=0 | | -42=15+b | | 5(x-1)-9=2x+1 | | x+234=2344 | | 7x-6+2x=5x-7 | | 1/3m-1/5=-4/3 | | 2(4y−1)=46 | | 5x+10=5x+2+8 | | 7-2x=4x+49 |